Аккумуляторы на основе никеля
- Категория: Поддержка по аккумуляторным батареям
- Опубликовано 23.03.2016 01:31
- Автор: Abramova Olesya
- 1. Никель-кадмиевые аккумуляторы (NiCd)
- 2. Никель-металл-гидридные аккумуляторы (NiMH)
- 3. Использование в потребительском сегменте
- 4. Железо-никелевые аккумуляторы (NiFe)
- 5. Никель-цинковые аккумуляторы (NiZn)
- 6. Никель-водородные аккумуляторы (NiH)
В течение целых пятидесяти лет портативные устройства для автономной работы могли полагаться исключительно на никель-кадмиевые источники питания. Но кадмий очень токсичный материал, и в 1990-х на смену никель-кадмиевой технологии пришла более экологичная никель-металл-гидридная. По сути эти технологии очень схожи, и большинство характеристик никель-кадмиевых аккумуляторов передались по наследству никель-металл-гидридным. Но тем не менее, для некоторых применений никель-кадмиевые аккумуляторы остаются незаменимыми и используются по сей день.
1. Никель-кадмиевые аккумуляторы (NiCd)
Изобретенный Вальдмаром Юнгнером в 1899 году, никель-кадмиевый аккумулятор имел несколько преимуществ по сравнению со свинцово-кислотным, единственным существовавшим тогда аккумулятором, однако был более дорогим из-за стоимости материалов. Развитие этой технологии было довольно медленным, но в 1932 году был сделан значительный прорыв - в качестве электрода стал использоваться пористый материал с активным веществом внутри. Дальнейшее усовершенствование было сделано в 1947 году и решило проблему газопоглощения, что позволило создать современную герметичную необслуживаемую никель-кадмиевую батарею.
На протяжении многих лет именно NiCd батареи служили в качестве источников питания для двухсторонних радиостанций, экстренной медицинской техники, профессиональных видеокамер и электроинструмента. В конце 1980-х были разработаны ультраемкие NiCd аккумуляторы, которые потрясли мир своей емкостью, на 60% превышающей показатель стандартной батареи. Это было достигнуто благодаря размещению большего количества активного вещества в батарее, но добавились и недостатки - повысилось внутреннее сопротивление и уменьшилось количество циклов заряда/разряда.
Standard Range AGM | Deep Cycle Range AGM | Gellyte Range GEL |
![]() |
![]() |
![]() |
10 - 12 лет / 600 циклов | 10 - 12 лет / 700 циклов | 10 - 12 лет / 750 циклов |
универсальная серия AGM | для глубоких разрядов AGM | универсальная серия GEL |
NiCd стандарт остается одним из самых надежных и непритязательных среди аккумуляторных батарей, и авиационная отрасль остается верной этой системе. Тем не менее, долговечность этих аккумуляторов зависит от надлежащего обслуживания. NiCd, и отчасти NiMH аккумуляторы, подвержены эффекту “памяти”, который приводит к потере емкости, если периодически не делать полный цикл разряда. При нарушении рекомендованного режима зарядки аккумулятор будто помнит, что в предыдущие циклы работы его емкость не была использована полностью, и при разряде отдает электроэнергию только до определенного уровня. (Смотрите: Как восстановить никелевый аккумулятор). В таблице 1 перечислены преимущества и недостатки стандартного никель-кадмиевого аккумулятора.
Преимущества | Надежный; большое количество циклов при правильном обслуживании Единственный аккумулятор, способный к ультрабыстрой зарядке с минимальным стрессом Хорошие нагрузочные характеристики, прощает их преувеличение Длительный срок хранения; возможность хранения в разряженном состоянии Отсутствие специальных требований к хранению и транспортировке Хорошая производительность при низких температурах Самая низкая стоимость одного цикла работы среди всех аккумуляторов Доступен в широком диапазоне размеров и вариантов исполнения |
Недостатки | Относительно низкая удельная энергоемкость в сравнении с более новыми системами Эффект “памяти”; необходимость периодического обслуживания для его избежания Кадмий является токсичным материалом, необходима специальная утилизация Высокий саморазряд; нуждается в подзарядке после хранения Низкое напряжение ячейки в 1,2 вольта, требует построения многоячеечных систем для обеспечения высокого напряжения |
Таблица 1: Преимущества и недостатки никель-кадмиевых батарей.
2. Никель-металл-гидридные аккумуляторы (NiMH)
Исследования никель-металл-гидридной технологии начались еще в 1967 году. Однако нестабильность металл-гидрида тормозила разработку, что в свою очередь привело к развитию никель-водородной (NiH) системы. Новые гидридные сплавы, обнаруженные в 1980-х, решили проблемы с безопасностью, и позволили создать аккумулятор с удельной энергоемкостью на 40% большей, чем у стандартного никель-кадмиевого.
Никель-металл-гидридные аккумуляторы не лишены недостатков. Например, их процесс зарядки более сложен, чем у NiCd. С саморазрядом в 20% за первые сутки и последующей ежемесячной в 10%, NiMH занимают одну из лидирующих позиций в своем классе. Модифицируя гидридный сплав, можно добиться снижения саморазряда и коррозии, но это добавит недостаток в виде уменьшения удельной энергоемкости. Но в случае использования в электротранспорте, эти модификации весьма полезны, так как повышают надежность и увеличивают срок службы батарей.
3. Использование в потребительском сегменте
NiMH батареи в данный момент являются одними из самых легкодоступных. Такие гиганты отрасли как Panasonic, Energizer, Duracell и Rayovac признали необходимость присутствия на рынке недорогого и долговечного аккумулятора, и предлагают никель-металл-гидридные источники питания разных типоразмеров, в частности АА и ААА. Производителями тратятся большие усилия, чтобы отвоевать часть рынка у щелочных батарей.
В этом сегменте рынка никель-металл-гидридные батареи являются альтернативой перезаряжаемым щелочным батареям, которые появились еще в 1990 году, но из-за ограниченного жизненного цикла и слабых нагрузочных характеристик не снискали успеха.
В таблице 2 сравниваются удельная энергоемкость, напряжение, саморазряд и время работы батареек и аккумуляторов потребительского сегмента. Представленные в АА, ААА и других типоразмерах, эти источники питания могут использоваться в портативных устройствах. Даже если у них может немного различается номинальный вольтаж, состояние разряда, как правило, наступает при одинаковом для всех фактическом значении напряжения в 1 В. Эта широта значений напряжения допустима, так как портативные устройства имеют некоторую гибкость в плане диапазона напряжений. Главное – необходимо вместе использовать только однотипные электрические элементы. Проблемы безопасности и несовместимость напряжения препятствуют развитию литий-ионных батарей в АА и ААА типоразмере.
Тип батареи | Емкость АА версии | Напряжение | Количество остаточной энергии вследствие саморазряда после 1 года | Примерное количество возможных снимков цифровой камерой |
NiMH | 2700 мАч, перезаряжаемая | 1,2В | 50% | 600 снимков |
Eneloop* | 2400 мАч, перезаряжаемая | 1,2В | 85% | 500 снимков |
Обычная щелочная | 2800 мАч, неперезаряжаемая | 1,5В | 95% 10-летний срок хранения | 100 снимков |
Перезаряжаемая щелочная | 2000 мАч, уменьшается при последующих зарядках | 1,4В | 95% | 100 снимков |
Литиевая (Li-FeS2) | 2500-3400 мАч, неперезаряжаемая | 1,5В | Крайне низкий саморазряд, 10-летний срок хранения | 690 снимков |
Таблица 2: Сравнение различных батарей типоразмера АА.
* Eneloop является торговой маркой корпорации Sanyo, основанной на NiMH системе.
Высокий показатель саморазряда NiMH является причиной продолжающейся озабоченности потребителей. Фонарь или портативное устройство с батареей NiMH разрядится, если не пользоваться им несколько недель. Предложение заряжать устройство перед каждым использованием навряд ли найдет понимание, особенно в случае с фонарями, которые позиционируются как источники резервного освещения. Преимущество щелочной батареи со сроком хранения в 10 лет тут видится бесспорным.
В никель-металл-гидридной батарее от Panasonic и Sanyo под торговой маркой Eneloop удалось значительно уменьшить саморазряд. Eneloop может храниться без подзарядки в шесть раз дольше чем обычная NiMH. Но недостатком такой улучшенной батареи является немного меньшая удельная энергоемкость.
В таблице 3 приведены преимущества и недостатки никель-металл-гидридной электрохимической системы. В таблице не учтены характеристики Eneloop и других потребительских торговых марок.
Преимущества | На 30-40 процентов большая емкость по сравнению с NiCd Менее склонны к эффекту “памяти”, могут быть восстановлены Простые требования к хранению и транспортировке; отсутствие регулирования этих процессов Экологически чистые; содержат только умеренно токсичные материалы Содержание никеля делает утилизацию самоокупающейся Широкий диапазон рабочих температур |
Недостатки | Ограниченный срок службы; глубокие разряды способствуют ее уменьшению Сложный алгоритм зарядки; чувствительны к перезаряду Особые требования к режиму подзарядки Выделяют тепло во время быстрой зарядки и разряда мощной нагрузкой Высокий саморазряд Кулоновская эффективность на уровне 65% (для сравнения у литий-ионных - 99%) |
Таблица 3: Преимущества и недостатки NiMH батарей.
4. Железо-никелевые аккумуляторы (NiFe)
После изобретения в 1899 году никель-кадмиевого аккумулятора шведский инженер Вальдмар Юнгнер продолжил исследования и пытался заменить дорогой кадмий более дешевым железом. Но низкая эффективность заряда и чрезмерное газообразование водорода заставили его отказаться от дальнейшего развития NiFe батареи. Он даже не стал патентовать эту технологию.
В 1901 году Томас Эдисон продолжил развитие этой электрохимической системы в качестве замены свинцово-кислотному аккумулятору для электрических транспортных средств. Эдисон был уверен, что NiFe намного превосходит свинцово-кислотную систему и рассчитывал на большой успех на зарождавшемся рынке электротранспорта. Но в итоге автомобили с двигателем внутреннего сгорания полностью заняли рынок, а железо-никелевая батарея не заинтересовала производителей даже в роли стартерного аккумулятора или как источник электричества для осветительных приборов. (Смотрите: История электрических силовых агрегатов).
Marin GEL Range | Deep Cycle GEL Range | Solar GEL Range |
![]() |
![]() |
![]() |
10 - 12 лет / 800 циклов | 10 - 12 лет / 800 циклов | 10 - 12 лет / 800 циклов |
для электромоторов лодок и катеров | для глубоких циклических разрядов | для солнечных электростанций |
Железо-никелевый аккумулятор (NiFe) использует в качестве катода гидрат окиси никеля, анода - железо, а электролита - водный раствор гидроксида калия. Ячейка такого аккумулятора генерирует напряжение в 1,2 В. NiFe устойчив к излишнему перезаряду и глубокому разряду; может эксплуатироваться в качестве резервного источника питания в течение более чем 20 лет. Устойчивость к вибрациям и высоким температурам сделали этот аккумулятор самым используемым в горной промышленности в Европе; также он нашел свое применение для обеспечения питания железнодорожной сигнализации, также используется как тяговой аккумулятор для погрузчиков. Можно отметить, что во время Второй мировой войны именно железо-никелевые батареи использовались в немецкой ракете “Фау-2”.
NiFe имеет низкую удельную мощность - примерно 50 Вт/кг. Также к недостаткам стоит отнести плохую производительность при низких температурах и высокий показатель саморазряда (20-40 процентов в месяц). Именно это, вкупе с высокой стоимостью производства, побуждает производителей оставаться верными свинцово-кислотным батареям.
Но железо-никелевая электрохимическая система активно развивается и в недалеком будущем способна стать альтернативой свинцово-кислотной в некоторых отраслях. Перспективно выглядят экспериментальная модель ламельной конструкции, в ней удалось снизить саморазряд аккумулятора, он стал практически невосприимчив к пагубному воздействию пере- и недозарядки, а его срок службы ожидается на уровне 50 лет, что сопоставимо с 12-летним сроком службы свинцово-кислотной батареи в режиме работы при глубоких циклических разрядах. Ожидаемая цена такой NiFe батареи будет сравнима с ценой литий-ионной, и всего в четыре раза превышать цену свинцово-кислотной.
NiFe аккумуляторы, равно как и NiCd и NiMH, требуют особых правил зарядки - кривая напряжения имеет синусоидальную форму. Соответственно, использовать зарядное устройство для свинцово-кислотного или литий-ионного аккумулятора не выйдет, это даже может навредить. Как и все батареи на основе никеля, NiFe боятся перезаряда - он вызывает разложение воды в электролите и приводит к ее потере.
AGM Deep Cycle |
GEL Deep Cycle | Литиевые (LiFePO4) |
![]() |
![]() |
![]() |
10 лет / 400 циклов | 10 лет / 500 циклов | 20 лет / 2200 циклов |
универсальное применение | для циклических разрядов | для частых глубоких разрядов |
Сниженную в результате неправильной эксплуатации емкость такого аккумулятора можно восстановить путем приложения высоких токов разрядки (соразмерных значению емкости аккумулятора). Данную процедуру необходимо проводить до трех раз с длительностью периода разряда в 30 минут. Также следует следить за температурой электролита - она не должна превышать 46°С.
5. Никель-цинковые аккумуляторы (NiZn)
Никель-цинковый аккумулятор похож на никель-кадмиевый тем, что использует щелочной электролит и никелевый электрод, но отличается по напряжению - NiZn обеспечивает 1,65 В на ячейку, в то время как NiCd и NiMH имеют показатель в 1,20 В на ячейку. Заряжать NiZn аккумулятор необходимо постоянным током с значением напряжения 1,9 В на ячейку, также стоит помнить, что этот вид аккумуляторов не рассчитан для работы в режиме подзарядки. Удельная энергоемкость составляет 100Вт/кг, а количество возможных циклов - 200-300 раз. NiZn не имеет в своем составе токсичных материалов и может быть легко утилизирован. Выпускается в различных типоразмерах, в том числе в АА.
В 1901 году Томас Эдисон получил патент США на перезаряжаемую никель-цинковую батарею. Позже его разработки были усовершенствованны ирландским химиком Джеймсом Драммом, который установил эти аккумуляторы на автомотрисы, которые курсировали по маршруту Дублин-Брей с 1932 по 1948 год. NiZn не получил должного развития из-за сильного саморазряда и короткого жизненного цикла, вызванного образованиями дендритов, что также часто приводило к короткому замыканию. Но совершенствование состава электролита уменьшило эту проблему, что дало повод снова рассматривать NiZn для коммерческого использования. Низкая стоимость, высокая выходная мощность и широкий диапазон рабочих температур делают эту электрохимическую систему крайне привлекательной.
6. Никель-водородные аккумуляторы (NiH)
Когда в 1967 началась разработка никель-металл-гидридных батарей, исследователи столкнулись с нестабильностью гидритов металла, что вызвало сдвиг в сторону развития никель-водородного (NiH) аккумулятора. Ячейка такого аккумулятора включает в себя инкапсулированный в сосуд электролит, никелевый и водородный (водород заключен в стальной баллон под давлением в 8207 бар) электроды.
NiH имеет номинальное напряжение ячейки в 1,25 В, а удельная энергоемкость составляет 40-75 Вт/кг. Преимуществами являются длительный срок службы, даже при глубоких циклах разряда, устойчивость к окружающим воздействиям вследствие низкого показателя коррозии, минимальный саморазряд и выдающейся диапазон рабочих температур — от -28°С до 54°С. Эти свойства делают NiH батареи идеальным решением для использования в спутниках. Ученые пытались разработать версии и для наземного использования, но низкая удельная энергоемкость и высокая стоимость приводят к нецелесообразности этого направления. Стоимость одной ячейки такого аккумулятора может достигать тысячи долларов. В свое время NiMH батареи заменили в спутниках никель-кадмиевые, сейчас же существует тенденция к замене NiH на литий-ионные. (Смотрите: Альтернативные электрохимические системы).
Последнее обновление 2016-02-16
Контроль и защита аккумуляторов
Батарейный монитор | Защита от глубокого разряда | Батарейный балансир |
![]() |
![]() |
![]() |
контроль более 25 параметров, история и синхронизация | защита от низкого и высокого напряжения, возможность регулировки | для 12, 24, 36 и 48В систем, возможность параллельного подключения |