Создание литий-ионного аккумулятора
- Категория: Поддержка по аккумуляторным батареям
- Опубликовано 15.04.2016 19:45
- Автор: Abramova Olesya
Первым этапом создания литий-ионного аккумулятора является определение требований к значению напряжения и необходимому времени работы. Затем уточняются характеристики нагрузки, окружающей среды, габаритные размеры и вес. У современных портативных устройств будут повышенные требования к толщине аккумулятора, поэтому предпочтительным будет выбор призматического или даже бескорпусного форматов. Если же толщина не будет определяющим фактором, то выбор цилиндрических элементов типоразмера 18650 в качестве структурных частей позволит обеспечить более низкую стоимость и лучшую производительность (с точки зрения удельной энергоемкости, безопасности и долговечности). (Смотрите также BU-301a: Разнообразие форм электрических батарей).
AGM Deep Cycle |
GEL Deep Cycle | Литиевые (LiFePO4) |
10 лет / 400 циклов | 10 лет / 500 циклов | 20 лет / 2200 циклов |
универсальное применение | для циклических разрядов | для частых глубоких разрядов |
Большинство аккумуляторов, используемых в медицинском оборудовании, электроинструменте, электровелосипедах и даже электромобилях, используют элементы типоразмера 18650. Казалось бы, использование этого цилиндрического элемента не особо практично из-за большого занимаемого им объема, но его сильные стороны, такие как развитая и массовая технология производства, а также низкая стоимость ватт-часа утверждают обратное.
Как уже говорилось выше, цилиндрическая форма элемента не является идеальной, поскольку она приводит к образованию пустого пространства в многоэлементных системах. Но если рассматривать вопрос с точки зрения необходимости охлаждения, то этот недостаток превращается в преимущество. К примеру, элементы типоразмера 18650 используются в электромобиле Tesla S85, где их суммарное количество достигает 7000 штук. Эти 7000 элементов формируют сложную аккумуляторную систему, где используется и последовательное соединение для увеличения напряжения, и параллельное – для увеличения силы тока. В случае выхода из строя одного элемента в последовательном соединении потеря мощности будет минимальна, а в параллельном такой элемент отключится системой защиты. Соответственно, нет зависимости всего аккумулятора от единичных элементов, что позволяет более стабильную эксплуатацию.
У производителей электромобилей нет единого мнения по поводу использования типоразмеров, но существует тенденция к использованию более крупных форматов, так как это уменьшает общее количество элементов в аккумуляторе и соответственно снижает стоимость системы защиты. Экономия может достигать 20-25 процентов. Но с другой стороны, использование больших элементов приводит к удорожанию суммарной стоимости кВт*ч. По данным за 2015 год, именно Tesla S85 с элементами типоразмера 18650 имеет более низкую стоимость ватт-часа в сравнении с электромобилями, использующими большие призматические аккумуляторы. В таблице 1 сравнивается стоимость кВт*ч различных электромобилей.
Контроль и защита аккумуляторов
Батарейный монитор | Защита от глубокого разряда | Батарейный балансир |
контроль более 25 параметров, история и синхронизация | защита от низкого и высокого напряжения, возможность регулировки | для 12, 24, 36 и 48В систем, возможность параллельного подключения |
Модель | Тип элемента | Стоимость кВт*ч | Удельная энергоемкость |
Tesla S85, 90 кВт (2015)* | 18650 | $260/кВт*ч | 250 Вт/кг |
Tesla 48кВт Gen III | 18650 | $260/кВт*ч | 250 Вт/кг |
Лучшие модели с DoE/AABC | бескорпусная/призматическая | $350/кВт*ч | 150-180 Вт/кг |
Nissan Leaf, 30 кВт (2016)* | бескорпусная/призматическая | $455/кВт*4 | 80-96 Вт/кг |
BMW i3 | бескорпусная/призматическая | нет данных | 120 Вт/кг |
Таблица 1: Сравнение стоимости ватт-часа различных моделей электромобилей. Массовое производство элементов типоразмера 18650 удешевляет использующие их аккумуляторы.
* В 2015-2016 году в Tesla S85 увеличилась мощность аккумулятора с 85 кВт*ч до 90 кВт*ч. В Nissan Leaf также произошло увеличение - с 25 кВт*ч до 30 кВт*ч.
Разрабатываемый аккумулятор должен соответствовать нормам безопасности не только при стандартной работе, но и в случае выхода из строя. Все источники энергии, и электрические батареи не исключение, в конечном итоге вырабатывают свой ресурс и приходят в негодность. Бывают и случаи преждевременного, непрогнозируемого выхода из строя. Например, после некоторых инциндентов, бортовой литий-ионный аккумулятор лайнера Боинг 787 помещен в специальный металлический контейнер с вентилированием наружу. В электромобилях Tesla аккумуляторный отсек дополнительно защищается стальной пластиной во избежание проникающих повреждений.
Большие аккумуляторные системы для высоконагруженных систем имеют принудительное охлаждение. Оно может быть реализовано в виде отвода тепла радиатором, а может включать в себя вентилятор для подачи холодного воздуха. Также существуют системы с жидкостным охлаждением, но они довольно дорогие, и используются, как правило, в электромобилях.
1. Аспекты безопасности
Уважающие себя производители электрических элементов не поставляют литий-ионные элементы несертифицированным компаниям-производителям аккумуляторов. Эта мера предосторожности вполне оправдана, так как схема защиты в конструируемом аккумуляторе может быть некорректно настроена ради завышения показателей, и элементы будут заряжаться и разряжаться не в безопасном интервале напряжений.
Стоимость сертифицированной аккумуляторной системы для воздушного транспорта или для иного коммерческого использования может составлять от $ 10000 до $ 20000. Столь высокая цена вызывает беспокойство, особенно зная о том, что производители периодически меняют используемые в таких системах электрические элементы. Аккумуляторная система с такими новыми элементами хоть и будет указана в качестве прямой замены более старой, снова будет требовать новых сертификатов.
Часто задают вопрос: ”Зачем нужна сертификация аккумулятора, если элементы, из которых он состоит, уже одобрены?”. Ответ довольно прост - конечное устройство, аккумулятор, также должно быть проверено на соответствие стандартам безопасности и правильность сборки. К примеру, неисправность той же схемы защиты может привести к возгоранию или даже взрыву, а ее тестирование возможно только в готовом аккумуляторе.
Согласно правилам, установленным ООН, аккумулятор должен пройти механические и электрические тесты, чтобы соответствовать требованиям, регламентирующим возможность воздушной транспортировки. Эти правила (UN/DOT 38.3) работают совместно с рекомендациями Федерального Управления Гражданской Авиации (FAA), Департамента Транспорта США (US DOT) и Международной Ассоциации Воздушного Транспорта (IATA)*. Сертификация распространяется на первичные и вторичные литиевые батареи.
Правила ООН 38.3 включают в себя такие тесты:
-
Т1 - Имитация работы на высоте (первичные и вторичные батареи)
-
Т2 - Температурные испытания (первичные и вторичные батареи)
-
Т3 - Вибрация (первичные и вторичные батареи)
-
Т4 - Удар (первичные и вторичные батареи)
-
Т5 - Внешнее короткое замыкание (первичные и вторичные батареи)
-
Т6 - Механическое воздействие (первичные и вторичные батареи)
-
Т7 - Перезарядка (вторичные батареи)
-
Т8 - Принудительный разряд (первичные и вторичные батареи)
Испытуемые электрические батареи должны пройти испытания, не причинив вреда окружающему пространству, сохранение ими работоспособности после тестов не играет никакой роли. Эти испытания предназначены исключительно для тестирования безопасности, а не потребительских качеств. Уполномоченная лаборатория, проводящая эти тесты, нуждается в 24 образцах батарей, 12 новых и 12 прошедших 50 циклов заряда/разряда. Присутствие уже используемых аккумуляторов гарантирует более реалистичное качество выборки.
Высокая стоимость сертификации является неподъемной для небольших производителей литий-ионных батарей, поэтому конечная цена сертифицированных моделей довольно высока. Но у потребителей есть выбор - вместо сертифицированного литий-ионного вполне можно приобрести аккумулятор на основе никеля, транспортировка которого не регламентируется так строго. (Смотрите BU-704: Транспортировка электрических батарей.)
Тяговые аккумуляторы Torjan (USA)
Dual Purpose | Industrial Line | Premium Line |
10 - 12 лет / 600 циклов | 10 - 12 лет / 1200 циклов | 10 - 12 лет / 1200 циклов |
тягово-стартерный | универсальная серия на базе уникальной технологии Smart Carbon |
2. Рекомендации по работе с литий-ионными батареями
-
Соблюдайте осторожность при работе и тестировании аккумуляторов.
-
Не допускайте короткого замыкания, перезарядки, сдавливания, падения, проникновения посторонних предметов, применения обратной полярности, воздействия высокой температуры на аккумулятор.
-
Не разбирайте аккумулятор.
-
Используйте только оригинальные литий-ионные аккумуляторы и зарядные устройства.
-
Следует прекратить эксплуатацию аккумулятора и/или зарядного устройства при чрезмерном нагреве.
-
Следует помнить, что вещество электролита легковоспламеняемое и взрыв или возгорание аккумулятора может привести к травмам.
* Международная ассоциация воздушного транспорта работает с авиакомпаниями и воздушной транспортной отраслью для обеспечения безопасности, надежности и экономичности авиаперевозок.